翻訳と辞書 |
Covering lemma : ウィキペディア英語版 | Covering lemma
In the foundations of mathematics, a covering lemma is used to prove that the non-existence of certain large cardinals leads to the existence of a canonical inner model, called the core model, that is, in a sense, maximal and approximates the structure of the von Neumann universe ''V''. A covering lemma asserts that under some particular anti-large cardinal assumption, the core model exists and is maximal in a sense that depends on the chosen large cardinal. ==Example== For example, if there is no inner model for a measurable cardinal, then the Dodd–Jensen core model, ''K''DJ is the core model and satisfies the covering property, that is for every uncountable set ''x'' of ordinals, there is ''y'' such that ''y''⊃''x'', ''y'' has the same cardinality as ''x'', and ''y'' ∈''K''DJ. (If 0# does not exist, then ''K''DJ=''L''.)
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Covering lemma」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|